3,630 research outputs found

    The Declining Use of Legal Scholarship by Courts: An Empirical Study

    Get PDF

    Competition between noise and coupling in the induction of synchronisation.

    Get PDF
    We apply a Fokker-Planck analysis to investigate the relative influences of coupling strength and noise on the synchronisation of two phase oscillators. We go beyond earlier studies of noise-induced synchronisation (without couplings) and coupling-induced synchronisation (without common noise) to consider both effects together, and we obtain a result that is very different from a straightforward superposition of the effects of each agent acting alone: two regimes are possible depending on which agent is inducing the synchronisation. In each regime, one agent induces and the other hinders the synchronisation. In particular we show that, counterintuitively, coupling can sometimes inhibit synchronisation

    Self-consistent analytic solution for the current and the access resistance in open ion channels.

    Get PDF
    A self-consistent analytic approach is introduced for the estimation of the access resistance and the current through an open ion channel for an arbitrary number of species. For an ion current flowing radially inward from infinity to the channel mouth, the Poisson-Boltzmann-Nernst-Planck equations are solved analytically in the bulk with spherical symmetry in three dimensions, by linearization. Within the channel, the Poisson-Nernst-Planck equation is solved analytically in a one-dimensional approximation. An iterative procedure is used to match the two solutions together at the channel mouth in a self-consistent way. It is shown that the currentvoltage characteristics obtained are in good quantitative agreement with experimental measurements

    Void Growth in BCC Metals Simulated with Molecular Dynamics using the Finnis-Sinclair Potential

    Full text link
    The process of fracture in ductile metals involves the nucleation, growth, and linking of voids. This process takes place both at the low rates involved in typical engineering applications and at the high rates associated with dynamic fracture processes such as spallation. Here we study the growth of a void in a single crystal at high rates using molecular dynamics (MD) based on Finnis-Sinclair interatomic potentials for the body-centred cubic (bcc) metals V, Nb, Mo, Ta, and W. The use of the Finnis-Sinclair potential enables the study of plasticity associated with void growth at the atomic level at room temperature and strain rates from 10^9/s down to 10^6/s and systems as large as 128 million atoms. The atomistic systems are observed to undergo a transition from twinning at the higher end of this range to dislocation flow at the lower end. We analyze the simulations for the specific mechanisms of plasticity associated with void growth as dislocation loops are punched out to accommodate the growing void. We also analyse the process of nucleation and growth of voids in simulations of nanocrystalline Ta expanding at different strain rates. We comment on differences in the plasticity associated with void growth in the bcc metals compared to earlier studies in face-centred cubic (fcc) metals.Comment: 24 pages, 12 figure

    Stochastic resonance in electrical circuits—II: Nonconventional stochastic resonance.

    Get PDF
    Stochastic resonance (SR), in which a periodic signal in a nonlinear system can be amplified by added noise, is discussed. The application of circuit modeling techniques to the conventional form of SR, which occurs in static bistable potentials, was considered in a companion paper. Here, the investigation of nonconventional forms of SR in part using similar electronic techniques is described. In the small-signal limit, the results are well described in terms of linear response theory. Some other phenomena of topical interest, closely related to SR, are also treate

    Stationary and Traveling Wave States of the Kuramoto Model with an Arbitrary Distribution of Frequencies and Coupling Strengths

    Get PDF
    We consider the Kuramoto model of an ensemble of interacting oscillators allowing for an arbitrary distribution of frequencies and coupling strengths. We define a family of traveling wave states as stationary in a rotating frame, and derive general equations for their parameters. We suggest empirical stability conditions which, for the case of incoherence, become exact. In addition to making new theoretical predictions, we show that many earlier results follow naturally from our general framework. The results are applicable in scientific contexts ranging from physics to biology.Comment: 5 pages, 1 figur

    Energy-optimal steering of transitions through a fractal basin boundary.

    Get PDF
    We study fluctuational transitions in a discrete dy- namical system having two co-existing attractors in phase space, separated by a fractal basin boundary. It is shown that transitions occur via a unique ac- cessible point on the boundary. The complicated structure of the paths inside the fractal boundary is determined by a hierarchy of homoclinic original sad- dles. By exploiting an analogy between the control problem and the concept of an optimal fluctuational path, we identify the optimal deterministic control function as being equivalent to the optimal fluctu- ational force obtained from a numerical analysis of the fluctuational transitions between two states
    corecore